If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10^2x-3=1/10000
We move all terms to the left:
10^2x-3-(1/10000)=0
We add all the numbers together, and all the variables
10^2x-3-(+1/10000)=0
We get rid of parentheses
10^2x-3-1/10000=0
We multiply all the terms by the denominator
10^2x*10000-1-3*10000=0
We add all the numbers together, and all the variables
10^2x*10000-30001=0
Wy multiply elements
100000x^2-30001=0
a = 100000; b = 0; c = -30001;
Δ = b2-4ac
Δ = 02-4·100000·(-30001)
Δ = 12000400000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12000400000}=\sqrt{40000*300010}=\sqrt{40000}*\sqrt{300010}=200\sqrt{300010}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{300010}}{2*100000}=\frac{0-200\sqrt{300010}}{200000} =-\frac{200\sqrt{300010}}{200000} =-\frac{\sqrt{300010}}{1000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{300010}}{2*100000}=\frac{0+200\sqrt{300010}}{200000} =\frac{200\sqrt{300010}}{200000} =\frac{\sqrt{300010}}{1000} $
| 1=1-b+4b | | 7n+2=28=5n | | -3+12y+6=7y+30 | | -6-x=-22 | | 5(2y-1)-2(3y)=-1 | | 6=x+1-2x | | -6(x-2)+3x=3(x+3)+21 | | -7=3k+4k | | 0.25+30+x=59.5 | | 21x+55=391 | | 89=97+x | | x+-3=-2 | | 1+2a+5=8 | | u+2=-9 | | 12x+18x-6+2=-7x+-6 | | -4x+20=4(5-x) | | x/10+x-5/15=1 | | X^3-50x=0 | | 330=-5+5(8r+3) | | 19=-9v5+6v | | 5(1-3x)+7=117 | | z-3=10 | | 2+10x=9x+-16+-7 | | 3x+33+3x+27=90 | | -3(x+0=15 | | −4y+4y+2=2 | | 225=50+(20+6)w | | 7p+2(8p-7=-106 | | 10+3(x=2)=31 | | 4+3n=-22+n | | 8x+6+9x-30=180 | | 7x+2(2x+1)=29 |